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ABSTRACT

This document contains the description of the digital simulations

for the generation of nominal interplanetary free-fall trajectories.

R is organized in three parts. Part 1-1 and Part 1-2 contain

the description of two computer decks for heliocentric and planeto-

centric phases, respectively. Part 1-3 gives an outline of how

these programs can be used for the design of interplanetary free-

fall mission profiles.
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ABSTRACT

This section contains the description of a digital computer

program for the design of interplanetary nominal free-fall

trajectories based upon two-body sphere-of-influence tech-

niques. In combination with Program 281, it provides the

initial conditions of the nominal trajectory for the perfor-

mance assessment simulation of aided-inertial space guidance

systems during the free-fall phases of an interplanetary

mission (Program Deck 284.0).
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The mathematical model for the performance assessment of space guidance systems

during free-fall phases requires a nominal trajectory. Two conceptually different

methods are frequently used to determine the nominal free-fall trajectory of an inter-

planetary mission. The first method uses the "exact" dynamical equations, i.e., the

influence of all planets in the solar system upon the space vehicle are taken into account.

In this case, no "closed form" analytical solutions do exist and the trajectory is deter-

mined by numerical integration of the associated set of nonlinear differential equations.

The second method is an approximate one. It utilizes the fact that the vehicle's motion

in different portions of free-fall is essentially determined by the gravitational attraction

of a single body. This means that the motion can be described by different two-body

orbits in different portions of the flight; heliocentric ellipses in the transfer phase,

planetocentric ellipses or hyperbolas during planetary approach, planet departure

phases, and periodic orbits around a planet. If the different two-body orbits are

appropriately "matched", the resulting orbit constitutes, as experience has shown,

a sufficiently accurate approximation to the exact orbit. [ 1] *

For the present study, it is particularly important that the approximation in the nominal

trajectory does not influence the conclusions about the adequacy or inadequacy of a

selected guidance system configuration for the particular mission. Thus, the deviations

of the approximate trajectory from the exact trajectory must be minimized in those

parameters which have the strongest influence upon the guidance system performance.

The two most important parameters are the time of flight and the distance from naviga-

tional references, such as planets, especially during those phases in which the most

useful information is obtained. For these reasons, the time of flight between the closest

approach at two consecutive planets and the closest approach distance itself is the same

for the exact and the approximating orbit. Simulation results have shown that such an

approximation procedure does not influence the conclusions about the adequacy of the

performance of a selected system configuration. Reduction in computer time and

elimination of the numerical errors inherent in any integration process are additional

advantages of this approximation.

The program itself is divided into two sections, namely, the heliocentric and planeto-

centric comL_utations. The heliocentric portion utilizes the JPL ephemeris routine [2]

in conjunction with Lambert's theorem. Any number of planets, departure and arrival

dates, can be specified. The orbital parameters of the corresponding heliocentric

transfer ellipses and the associated hyperbolic excess velocity vectors are computed.

Lambert's theorem is implemsnted in such a fashion that conjunction as well as opposi-

tion class trajectories can be computed. Only the case in which the two heliocentric

position vectors are collinear within a certain _-bound is excluded since the orbit plane

is not specified in this case. In the planetocentric block, the hyperbolic approach and

departure trajectories are computed. Three different cases have to be distinguished,

namely, the regular case, planetary departure, and planetary entry.

* Numbers in brackets indicate references at the end of the section.
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The regulax case is characterized by the fact that two hyperbolic excess velocity vectors are

available and the planetocentric orbit-plane is, therefore, determined. The incom-

ing hyperbola is determined by the incoming hyperbolic excess velocity vector and a pre-

specified closest approach distance. The outgoing hyperbola is then computed using

the outgoing hyperbolic excess velocity vector and the position vector which constitutes

pericenter for the incoming hyperbola. In general, there will be a discontinuity in the

velocity at the intersection of these two hyperbolas which has to be provided either

by the propulsion system or atmospheric braking maneuvers. It should be emphasized

that this arbitrary selection of the point on the incoming hyperbola for the trajectory

change m_neuver does not necessarily constitute an optimam. Using this option of

the program implies that the parking orbit in planetary stopover missions is coplanar

with the approach and departure hyperbola. However, out-of-plane parking orbits

can easily be treated by using the planetary departure option of the program which is

explained below.

For planetary departure phases, only one hyperbolic excess vector is provided by the

heliocentric computation. In order to define the planetocentric orbit plane, a second

vector must be specified. Two options are available. In the first option, the projec-

tion of the hyperbolic excess velocity vector on the equatorial plane is rotated clockwise by

rr/2. In the second option, this vector can be chosen in an arbitrary manner.

Analogous to the planetary departure phase, only one hyperbolic excess velocity

vector is given for planetary entry phases. The plane of motion is specified by addi-

tional constraints; namely, flightpath angle, the declination of the pericenter at which

the closest approach occurs, and the constraint implying direct motion. In all these

cases, the orbital parameters of the hyperbolas are computed. This essentially

describes the capabilities of the Program 291.1.

The actual initial conditions for the matched conics are determined by using the output

of this program in conjunction with Program 281. This is done by the following pro-
cedure: first, the position and velocity for each planetocentrichyperbola is computed at

the point of closest approach and the sphere of influence, thus providing the initial

conditions for the planetocentric flight phases. The associated flight times are also

determined. Corresponding heliocentric transfer ellipses which are matched in posi-

tion at the spheres of influence are found using the output of 281in 291.1 in two

steps. First, modified ephemerides of the planets are computed taking into account the

flight times in the planetocentric phase. Then the new heliocentric position vectors

of the probe at corresponding points of the spheres of influence and the associated

times are used to find a new heliocentric transfer ellipse. This yields the initial

conditions for the heliocentric phases and completes the process. The procedure

could be repeated by using the new hyperbolic excess velocity vectors in conj uction with 281

in order to modify the planetocentric hyperbolas and achieve matching in position and

velocity. However, for the present purposes, the "first order" matching is sufficiently
accurate.

2
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2.0 MJ_THEMATICAL MODE L

2.1 A GENERAL DESCRIPTION OF THE PROBLEM

The design of free-fall trajectories for interplanetary missions requires knowledge
of the position and velocity of the planets as function of time. The information is

provided in this program by the new JPL ephemeris routine (EPHEM) [2].

Specification of Julian dates and corresponding code names for the planets in the

program will provide the desired information.

Then, given two planets and two dates, Lambert's equation may be used to compute

the heliocentric elliptic trajectory required to connect the two planetary positions in

the time interval defined by the difference in the dates supplied. As planetary velo-

cities are known, the V_h (hyperbolic-excess velocity) vectors are readily obtained
by differencing the planetary and trajectory velocities.

In the case of a round-trip or multi-planet mission, there will exist at each target

planet two V h vectors--one of which corresponds to the incoming heliocentric trans-
fer ellipse and the other of which corresponds to the outgoing transfer ellipse. From

very simple geometric considerations of central-force field m_tion, it immediately

becomes clear that these two velocity vectors, originating at their respective planeto-

centric positions, will define a unique orbit plane which passes through the center of

the target planet. Also, from the nt_gnitude of V h and the gravitational constant of
the planet, one may obtain the semi-major axis of _he planetocentric hyperbola.

Finally, the hyperbola is specified completely by choosing a pericenter distance;

tim_ may be referenced to the arrival date.

This, in general, describes the basic approach to trajectory computations as employed

in the design of Program 291.1.

2.2 FORMULATION FOR HELIOCENTRIC PHASE

A drawing of the practical basis for the heliocentric trajectory formulation scheme is

illustrated in Figure 1.

In this, a typical case, a vehicle leaves planet 1 at time T 1 along the ellipse shown.

It then arrives at planet 2 at time T2 with the incoming and outgoing V h vectors
indicated. At planet 2 a velocity change is executed (this is not always necessary)

and the vehicle leaves planet 2 on a second ellipse and arrives at planet 1 at time T 3.

If T 3 - T 1 is equal to an integral multiple of the orbital period of planet 1, the
resulting-transfer ellipses will, in fact, be identical and have continuous first deriva-

tives with respect to time over the interval T 1 _ t _ T3. Such a trajectory is called

a mono-elliptic transfer. In general, however, it will be necessary to "break up"
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each round-trip mission into two or more distinct transfer ellipses, each of which is

called a "leg% In this analysis, it is assumed that the only source of gravitational

fields is that of the sun, and the masses of the planets can be neglected during the helio-

centric transfer phase.

V h (outgoing)

Planet 2

V h

(approach)_

r 2

V h (incoming)

Orbit of Planet 1

Orbit of Planet 2

Sun V h (launch)

Planet 1 T 1

Planet 1

Figure 1. Geometry of a Typical Interplanetary Round-trip Mission

The heliocentric transfer phase of this program is formulated in accordance with the

philosophy described above, i.e., each leg of a mission is computed separately.

Thus, it is necessary at all times to enter at least tw_._2oplanets and two dates for
proper computation,

2.2.1 Ephemeris Routine, EPHEM

This consists of a tabulation of ephemeris data for all nine planets and the Moon from

December 30, 1949 (J.D. 2433280.5)to January 5, 2000 (J.D. 2451548.5). The

position and velocity of any planet at any time within the interval specified is found

from Everett's interpolation formala utilization fourth differences [ 2].

Thus, it is apparent that specification of T1, T2, planet 1, and planet 2 is all that is

necessary to obtainrl, r 2 and the respective planetary velocities (Figure 1). All
vectors are expressed relative to the mean equator and equinox of 1950.

4
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2.2.2 Lambert's Equation [3]

Lambert's equation is used in the form required to compute an ellipse given two
position vectors (rl, r_.) and the flight time between them {To - T_). The basic

equation assumes one of four form_ shown below, depending upon the conditions of

the problem:

P
i. T -

c 2n
[(_ - sin _) - (/3 - sin fl)] +NP

P
2. T -

c 2n [(or- sincx) +(fl- sinfl)] +N-P

3. T = P-
c

P
[('_- sin _) + (fl- sin fl)]+ NP

cz and fl are computed from the following:

s
cos _ = 1 - --

a

cos/3 = 1 -
S-C

a

where

r 1 + r 2 + c

J 2 2 \
c = r l+r 2-2rlr 2 cos {9 ,

and

8 = 9 --r1, --L2, commonly called the transfer angle.

P is the period of the ellipse given by
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In this case, a is obtained by iteration from a predetermined first guess. The pro-

gram logic determines one of the four forms of the equation to use based upon the

specified flight time T and the criterion of direct motion. N is the number of complete

circuits encompassed by the probe. In cases where N > 0, several solutions to the

equations are possible, and it is necessary for the user to know the approximate value

of a for the desired trajectory. In practice, the input value is usually made about

1 percent higher than the desired value, as the iteration scheme tends to converge

toward the lower value of an initial a. The detailed equations and logic flow are

specified in Section 5.1.2.

2.2.3 Conic Determination

The plane of motion is determined from r I and r 2 such that Wz, the polar component

of W, is positive. The semilatus rectum is determined from the equation

p = [4a (s - rl)(S - r2)/c21 sin 2 [(a +_fl)/21

where the sign in c_ + fl is chosen by program logic (see Section 5.1.1).

The true anomolies V 1 and V2, corresponding tor 1 andr 2 respectively, are obtained

from the simultaneous equations

e cos V 1 = _]2.
r 1

- 1

e cosV 2 = _- - 1
r 2

Since V - V 1 is the transfer angle, there results two equations in two unknowns

which n_ay be solved explicitly for p and V 2 - V 1 = AV.

The elliptic velocity V is obtained from the following sequence of computations:

r = J--- esinV
P

U =Wx
--v r

v = + u
-- r r --v
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in this case r may be r I or r 2 in accordance with the situation. These equations
resolve the velocity into two components, one radial and the other normal to the

radius vector r.

The _Vh or hyperbolic,excess velocity vectors are obtained by differencing the elliptic
and planetary velocities and transforming the results to spherical coordinates for

the output. This is accomplished through the equations

._Vh =V- i---p

-1
= sin Vhz

1%
e = tan

Vhx

where

V h

V

r =
--p

¢=

e =

= hyperbolic-excess velocity

= velocity of vehicle on central body ellipse

velocity of planet relative to central body

declination of hyperbolic-excess velocity vector

right ascension of hyperbolic velocity vector.

2.3 PLANETOCENTRIC FORMULATIONS

As stated earlier, the basic problem in the planetocentric section is that of comput-

ing a hyperbolic trajectory given the hyperbolic-excess velocity vectors and closest-

approach distance.

In the case of round-trip interplanetary trajectories, there will usually result tw__0o

hyperbolas at the target planet; these must be matched in position and time. One

hyperbola (incoming) is defined by the incoming Yh vector (_Vh_), pericenter distance,
and direction of the outgoing asymptote. The othe_ hyperbola (oPuigoing) is defined by the

outgoing Vh(V" L) , common orbit plane, and closest-approach position on the incoming

hyperbola. A_though these formulations assume that V h is at infinity, as the radii of

planetary spheres of influence are quite large, the resulting discrepancy will be small
for purposes of mission analysis.
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Normally the planetocentric computations are performed only for the first planet in

a leg. However, if the second planet is EARTH, computations are m_de for both

planets, using a special set of equations for Earth re-entry. Also, if the first planet

is EARTH, the orbit plane is computed in a unique manner. These special cases are

explained in more detail in the following sections.

In addition to the fundamental computations mentioned above, the program will also

compute additional parameters which may be useful as information for design

purposes. These include such things as the asymptote deflection angle K, optimum

closest-approach distance r opt, angle between the incoming and outgoing hyperbolic
pericenters _0, and polynomial coefficients for the computation of the optimum radius

for circular capture orbits (al, a 2, a 3, a4).

2.3.1 Orbit Plane Determination

2.3.1.1 Orbit Plane for Planetary Departure (See Figure 2)

Let S 1, S 2 be such that S l x _$2/IS 1 x.S21 = W. Further, let_S 2 = VhL/IVhL I .

If the first planet is EARTH, then the S vector is chosen in such a way that-1

1. The resulting motion is direct rather than retrograde,

2. The orbit plane inclination is a minimum for a given _hL

These conditions will insure easterly launchings and, in addition, they will make

maximum use of the earth's rotational speed as an aid in minimizing the required

boost velocity. This follows from the fact that maximum tangential speed due to

earth rotation is obtained whenever the orbit plane is close to the equatorial plane.

In turn, it can be shown that two sufficient conditions for W z to be a maximum (and

hence the orbit plane inclination a minimum) for a givens 2 are

1. That 91 = 0, where 91 is the declination OfSl, and

2. tan 91 = - ctn 02, where e I and 92 are respectively the right ascensions

of_S 1 andS 2.

All of the criteria above may be satisfied by choosing S 1 such that its declination is

zero, and its right ascension is 90 ° less than the right ascension of_S 2. Additionally,

S 1 chosen under these conditions is in effect the line of the ascending node. FLAG 3

enables the user to input arbitrary values of_S 1 if a different criterion is desired.
This flag will work for any planet.

2.3.1.2 Orbit Plane at Target Planet

If, for a round-trip flyby trajectory, the orbit plane at the target planet is chosen such

that it contains the incoming and outgoing _Vh vectors, no plane change will be necessary
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to complete the mission. As this criteria is undoubtedly the most expedient situation

with regard to trajectory change maneuvers, it has been incorporated into this program*.

The planetocentric orbit plane vector W is then computed from

_w

where

x--S 2

--S1 = ---Vhp ; S 2 = .VhL

Z

X

Figure 2. The Orbit Plane of Minimum Inclination

* Nevertheless, an option (Flag 3) has been provided to allow selection of a

different orbit plane if the user so desires.
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2.3.1.3 Earth Re-entry

The determination of the orbit plane for Earth re-entry is much more complicated

than those explained in the previous two cases. Basically, the objective is that of

orienting the vehicle velocity at atmospheric contact such that the vehicle will tend

to travel under gravity toward a specified declination relative to the Earth. This

problem is illustrated in Figures 3 and 4.

Let V r be the speed at a re-entry distance of rr; let y be the angle between_V r and

r r. Then

j 2Vr = " (r -
r

where

2

1 Vh

a GME

Vh being the hyperbolic excess speed, a the semi-major axis of the hyperbola, and
G1HE the gravitational constant of the Earth. As it is usually required that y and r r

be specified in order to obtain a desired re-entry corridor, the eccentricity e may be

computed from

J r sin 2 y
e = 1 + rl a 12 (2 i a i+rr )

If S is a unit vector in the direction of the incoming asymptote, P is the perifocus

vector (see Figure 3), and a is the angle between them, one may formulate the

relationship

1
cos u =P" S=S cos dpcos O+S cosdpsinO+S sindp=-

x y z e

where S , S , S are the Cartesian components of S, d_ is a specified _leclination equal

to the deXclin_tio z of P, and _ is the right ascensionof_P. Clearly, in the latter

equation, 9 is the only unknown and the equation may be solved, yielding the solutions

10
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sin 0

COS (9

where

CS +S /$2+S2-C

_ y- x x y

S2 + S2
x y

2 \

CS + S JS 2+S 2- C 2 \
x- y x y

S2 + S2
x y

C
1

COS q_

1
(-;-- Szsine)

S

%_ 'r--

%ePv

Figure 3. Location of S and P Vectors

Obviously solutions exist in two quadrants, and the one corresponding to W z _ 0 is
chosen. Thus 0 and qbcomplete the definition of_P, and it, together _-ith _S, defines

the orbit plane. Notice that an Earth-fixed longitude is clearly a function of time,

and for this reason it was not considered in formulating the problem. For certain

choices of qb it is possible for the radicand to become negative. If'such should be the

case, the program will print the comment "RE-ENTRY CONDITIONS CANNOT BE
OBTAINED".

11
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By appropriate handling of input parameters, these computations can also be extended

to re-entry at other planets.

Z

P

X
Equator

V
"-T

Y

r ¥
--r

\

\

Figure 4. Geometry of Hyperbola at Re-entry

12
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2.3.2 Trajectory. Parameters at me 'rarget Planet

Figure 5 illustrates the geometry of the trajectory at the target planet. This will

USl_a!!y consist of two distinct hyperbolas which are matched in position and time _t

rp, the closest-approach vector for the first hyperbola. K is the angle between the unit

asymptote vectors S1, S 2, while r_ is the elosest-approach vector for the outgoing

hyperbola. _ is the angle between rp and ,1:_.

S 1

/

/

/

B

/

/

Figure 5. Incoming and Outgoing Trajectories

13
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2.3.2.1 The Incoming Trajectory

As W, _S1, and S 2 have already been defined in Section 2.3.1.2, the remaining

parameters may be computed for the incoming hyperbola from these and Vhp , the
incoming hyperbolic-excess speed. These include a, the semi-major axis, computed

from

GM
a _=- m m

V2
hp

where GM is the gravitational constant of the planet; the eccentricity e from

r
__P_

e = 1 -
a

and B, the "impact parameter", as expressed by

B

2GMr 2
P +r

V 2 P
hp

The vectors it, $1, and T form a special orthogonal set such that

_R = SlxW_

T lies in the XY plane and is defined by

= Sly - Slx
T

lx + $2 \ ' J $2 + $2 ' ' 0
ly lx ly

The quantities B • T and B " R are sometimes useful in trajectory computation and

design.

The pertfocus unit vector P is obtained from the linear combination of_S 1 andS 3 as

P = J'e2-12 -$3 ÷ le SI

e

where_S 3 = S lxW

14
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2.3.2.2 The Outgoing Trajectory

The problem of determining the outgoing trajectory is that of defining a hyperbola

mined from the polar equation of a conic

2
ercosf+ae +r-a=0

where f is the true anomaly; and the equation

COS O/

1 _S2 r'-p

e' Ir;,I

where _ is the angle between _r_ and_S2, and e' is the eccentricity of the hyperbola

to be computed• The quantities Su and S are formed, where
V

S = -_$ "p
u 2 --

Sv = - S2 (P x W)

Then, from Figure 5 it is apparent that relative to the u, v coordinate system shown,

r'/Ir' I has the respective components cos w and sin w. Hence one may establish the
relationship

1 1_ = S cos w+S sinw

e' Ir:l u v

U,V

Since, when r = rp, f = w, cos f = cos 00, and the conic equation may be written as

e'r_cos w+a'e '2 +r 0
P

where a' is the semi-major axis of the hyperbola in question and is computed from the

outgoing V h.

15
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From the equation

1
S cos _+S sinoJ=

u v e'

one may solve for e' cos _ and substitute this into the conic equation, yielding

J \ (e,2r +l)+r S e '2 1 +a' -1) = 0
p (Su p v -

This is readily solved using the transformation

2 e,2z = -i

which results in the quadratic

a'z2+r S z+r ( +1)
p v p Su

2
This in turn is solved for z as

= 0

2 S2 J r 2 S2 \
2 r +r S -4a' r +i) - 2a'r +i)p v p v p v p (Su p (Su

Z =

2a ,2

from which one may obtain e' and r' as
P

and

r' = a' (l-e')
P

This completes all that is necessary to define the hyperbola.

16
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2.3.2.3 Gravitational Turns

It is possible in many situations to use the gravitational attraction of the planet to

A

_Vh. This is accomplished through choice of the closest-approach distance r =
The relationship is P r°pt"

GM . K

rop t - ,I-Vhp12 (csc -7 -1)

where _Vhp is the incoming hyperbolic-excess velocity and K is obtained from

-1
K = cos S 1 "S 2

In cases where rop t is less than some minimum allowable value, the smallest practical

distance for rp should be used.

2.3.2.4 Use of 0_

In some cases it may occur that r' lies ahead of r_ in the direction of travel, and
_p --p

further, that lr_l < Ir I. This means that on the outgoing trajectory, the vehicle
may come closer to th--_planet than originally planned, and the effect may or may not

be serious. If such is the case, and if Ir_l- Ir_l is more than about one percent of

rp, the trajectory should be redesigned o-'r_ a larger value of rp should be used. In
such cases it will be found that the angle o_ will be quite large. In fact, o_ may be used

as a rough indication of the degree to which the incoming and outgoing hyperbolas are

matched. In cases of perfect matching (no need for a velocity change) _o will be zero,

and as the matching characteristics deteriorate, o)will increase.

2.3.2.5 Circular Capture Orbits

It can be shown that for two-impulse transfer from a hyperbolic to a circular to

a hyperbolic orbit, the distance that yields the minimum total impulsive speed may be

obtained from the real root of the quartic

4 3 2 3
16x +a I x +a2x +a x+a4=0

where

a 1 = 8(c I + c 2)

17
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a 2 = -(c 1 - c2 )2

2
a 3 = -2(c21c 2+c 1 c 2)

2 2
a4 = -c I c 2

V 2 2
_ hp VhL

Cl- GM ; c2- GM

Vhu and VhL are respectively the hyperbolic excess speeds of the incoming and
oufgoing hyperbolas. The optimum transfer distance r is obtained from x by

1
r -

x

Program 291.1 computes the coefficients a i but does notsolve the quartic.

3.0 PROGRAM ORGANIZATION

Flow charts provide the basic framework around which the discussion is constructed.

These diagrams serve to indicate the logical flow connecting different functional

blocks. They do not describe literally the operation within the computer program

itself because many of the programming details are of little interest to most engineers.

The flow charts have been arranged and drawn according to a heirarchical structure.

The _highest" level, designated as Level I, depicts the over-all structure of the

program. Each block appearing in this chart is described by another flow chart.

These charts are designated as Level II. This policy is repeated for each block in

every level until no further logic remains to be described.

Paragraph 3.1 contains a further discussion and definition of the criteria used to

establish the different flow chart levels. The symbols used in the flow charts are

defined in Paragraph 3.2. The symbols and nomenclature that are fundamental to

the discussion and equations are defined in Paragraph 3.3.

3.1 SCHEMA FOR FLOW CHART PRESENTATION

As has already been stated, the flow charts are arranged according to "levels ". In

the resulting hierarchy, the Level I flow chart provides the most general description

since it depicts the over-all program. Each functional block is further described by

18
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lower level flow charts. These charts indicate t_,e logical =" ........w.u,"-=,, the t.IA--1. ^--,-JJ. JI.U W U.ILVI.; J_. ¢ttLU

describe the input and output requirements of the block. The equations used to obtain

the desired outputs are presented as a supplement to the lowest level flow chart.

LEVEL I: This flow chart is designed to provide a very general description of the

entire program. The titles assigned to the functional blocks are intended to be sug-

gestive of the nature of the role to be performed within the block. Those functions

that are to be performed in the basic computational cycle are designated by Roman

numerals. Arabic symbols are used for functions that occur only once or play a

passive role.

To indicate the basic logical decisions that can regulate and alter the flow between

functional blocks, decision blocks are indicated. These blocks represent in a

general manner the types of decisions that are required. The actual decision logic
is described in the Level II flow charts of the functional blocks immediately pre-

ceding the decision block.

LEVEL II: The Level II flow charts provide the first concrete description of the

program. Only the most important logical flow withineach functional block is

indicated on these diagrams. The quantities that are required for all logical and

computational operations within this block are stated on this chart. These quantities

are differentiated as being either INPUT (i. e., values provided initially by the

engineer) or COMPUTED (i. e., values determined in other portions of the program).

The quantities that are required in other parts of the program, either for print-out

or for computations, are also indicated on this flow chart. The functional blocks

that appear on these diagrams are denoted by two symbols (e. g., II. 1 when discussing
the "first" block in the Level II flow chart of functional block H) and a name. The

names have been selected to provide some insight into the nature of the block.

LEVEL IIh These diagrams provide additional details of the logic flow within the

functional blocks depicted at Level 1I. In this program definition, Level HI provide

the description of the most intimate logical details in almost every case so no purpose

was served by proceeding to lower levels. These flow diagrams are augmented by

the equations programmed into the computer. The input and output requirements of

these blocks are stated on the diagrams. All of these quantities are summarized on

the Level II flow chart.

3.2 DEFINITION OF FLOW CHART SYMBOLS

The following symbols represent the only ones that are used in the flow charts pre-

sented below.

19
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Set of operations that is to be described further

by additional flow charts or by equations

Logical Decision

Operations that are predefined (i. e., in some

other document)

Operations are completely defined by the
statements contained within the box

C )* Connector used on Level II Flow Charts to

indicate entry source and exit destination

Connector used on Level III flow charts

Summary of all quantities required in compu-

tations of flow chart on which this symbol

appears or, alternatively, summary of all

quantities computed in this flow chart which

are required in other operations

This broad arrow appears on Level I and
Level II flow charts. It is used to indicate

information flow from one block to another.

The more important information is stated within

the arrow. This symbol has been introduced to

emphasize that many quantities are transmitted

between the functional blocks in the higher level
charts.
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3.3 u,'._L_r1iu_ OF MATHE_vlATICAL SYMBOLS

The following symbols are used in the description of this program:

3.3.1 Symbols for Heliocentric Equations

a semi-major axis of ellipse in km

a 1 initial value for a in Lambert's equation

a
o

e

basic decrement for k n in Lambert's equation routine (a 0 i s stored
in the program and cannot be modified using the load sheet format)

eccentricity of ellipse

I NUMBER number of iterations required for convergence in the LambertVs

equation routine

k
0

k
n

initial scaling factor for Aa in Lambert's equation routine _k0is stored
ia the program and cannot be modified using the load _hi_et format)

final scaling factor for Aa in Lambert's equation routine

n integer used to scale a (0 _ n _ 4)
0

N as an input, N is also used to denote the number of complete orbital

circuits of the probe about the central body

OPTION option number used in computing T
C

P

P.
1

semi-latus rectum

.th
1 approximation to the period of the ellipse

Planet 1 name of the departure planet

Planet 2 name of the target planet

rl; rpl

±i

heliocentric injection position;

heliocentric injection velocity

position of injection planet at T 1

r2 ; _p2

±2

heliocentric target position; position of target planet at T 2

heliocentric velocity of the probe at target position

21
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tJ'_.3

rpl

r
p2

VhL

Vhp

--VhL

Vhp

T 1

T 2

Tc(a m)

AV

_L

6
P

ET

W

3.3.2

heliocentric velocity of the injection planet at injection

heliocentric velocity of target planet at the arrival time

hyperbolic excess speed at the injection planet

hyperbolic excess speed at the target planet

hyperbolic excess velocity at the injection planet

hyperbolic excess velocity vector at the target planet

injection time expressed in Julian days in double precision

arrival time expressed in Julian days in double precision

time of flight for the minimum energy trajectory

the angular distance between r I and r 2

celestial longitude of VhL

celestial longitude of Vhp

celestial latitude of VhL

celestial latitude of
--hp

tolerance on convergence of Lambert's equation

gravitational constant of central body

unit vector normal to the orbit plane in the sense of a right-hand

s c Few

Aa increment in semi-major axis in Lambert's equation iteration
routine

Symbols for Planetocentric Phase

GM gravitational constant of planet (in km3/sec 2)

22
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"

Sly

Slz J

W1X

W
Y

W
Z

B

X

B
Y

B
z

X

T
Y

T
z

x

R
Y

R
z

B

components of orbit-plane determination vector, _S1

components of unit vector normal to orbit plane, W

impact parameter

components of B, the impact vector

components ofT, in the R, S, T system

components of R in the R, S, T system
u

parameters specifying geometry of incoming hyperbola relative

to R, S, T system

a

e

semi-major axis of incoming hyperbola

eccentricity of incoming hyperbola

23
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U_

a 1

a 2

a 3

a 4

x

P
Y

P
z

K

r
opt

Pvt
x

p,
Y

p'
z

r !

P

e !

a !

R
c

r
r

Y

coefficients for polynomial used to find the optimum capture orbit

radius in capture missions

components of P, the perifocus vector for the incoming hyperbola

asymptote deflection angle

radius for gravitational turns

components of P', the per[focus vector for the outgoing hyperbola

closest-approach distance on outgoing hyperbola

eccentricity of outgoing hyperbola

semi-major axis of outgoing hyperbola

angle between perifocus vectors on incoming and outgoing hyperbolas

closest-approach distance on Earth re-entry hyperbola

radius of re-entry sphere

angle between position and velocity at re-entry

declination of per[focus vector at re-entry
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3.4 BASIC ORGANIZATION OF THE PROGRAM

The program is divided into five basic sections or blocks as illustrated in the Level I

flow chart. The INPUT block A contains data sorting and a summary of all inputs to

the program that can be readily supplied or modified by the user. The INITIALIZA-

TION block B consists of the EPHEM ephemeris routine which is described in detail ,

in Ref. _1_. In the INITIALIZATION block, the planetary positions and velocities are

computed from the dates supplied in the input. The HELIOCENTRIC block consists of

the implementation of Lambertts equation to compute the semi-major axis of the helio-

centric ellipse, and the computation of other elements and parameters of this ellipse.

The PLANETOCENTRIC block contains the computations of parameters for the incom-

ing and outgoing planetocentric trajectories. Finally, the OUTPUT block consists of

a summary or list of all output quantities printed by the program under normal usage.

It should be made clear that entry into the OUTPUT block is not necessary for print-

out to occur, for the program _¢ill print data groups without having entered OUTPUT.

Thus the OUTPUT block in this case represents termination of the run. As the pro-

gram may process several legs for a given submission, the quantities and operations

described herein are assumed to be for the mth leg.

4.0 INPUT, INITIALIZATION, OUTPUT

4.1 INPUT, BLOCK A

The following quantities are inputs to the program and may be easily supplied or

modified by the user. Planet code names are formed using only the FIRST SIX

LETTERS of the normal spelling. For example, Jupiter would be entered as

JUPITE. Assembled inputs are indicated by the word "assembled" followed by the

assembled value. These are values that will be used if no input is entered.

Planet 1 code name for launch planet

Planet 2 code name for target planet

Time 1

Time 2

r
P

Flag 1

T 1 expressed in Julian days

T 2 expressed in Julian days

pericenter distance at Planet 1, assembled, 6563.

option for ephemeris data only, assembled, 0

Flag 2 option for ephemeris data input, assembled, 0

Flag 3 option to inputS1, assembled, 0
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Xl, YI' Z1

XI' YI' Z1

X2' Y2' Z2

x2' Y2'

SIx' Sly' SIz

ET

input values fOrrpl (use only if Flag 2 is non-zero)

input values for rpl (use only if Flag 2 is non-zero)

input values fOrrp2 (use only if Flag 2 is non-zero)

input values fOrrp2 (use only if Flag 2 is non-zero)

components of _S1 (use only if Flag 3 is non-zero)

gravitational constant of sun (or other central body)
assembled, 1. 3271544 x 1011

tolerance on flight time for central body ellipse in seconds,

assembled, 5000.

%0 declination of perifocus vector at Earth re-entry in decimal

degrees, assembled, 28.5

¥ angle between position and velocity vectors at Earth

re-entry in decimal degrees, assembled, 96.0

r
r

CENTRAL BODY

radius of re-entry sphere at Earth, assembled, 6500.

name of central body (for elliptical orbits), assembled, SUN

N N, the number of complete circuits encompassing the

central body in time interval T 2 - T1, assembled, 0.
Note: If N > 0, the approximate value of the semi-major

axis of the desired ellipse must be specified.

Position and velocity must be expressed in km. and km./sec., respectively, while

is given in km_/sec 2. The gravitational constants for the planets are stored

internally, and will be called whenever the corresponding planet is entered.

4.2 INITIAUZATION - BLOCK B, THE EPHEMERIS ROUTINE AND ASSOCIATED

LOGIC

As the EPHEM ephemeris routine is described in detail elsewhere [2] only its

general aspects will be discussed here.

The routine contains a tabulation of positions and velocities for all nine planets and

the moon from December 30, 1949 (Julian date, 2433280.5) to January 5, 2000

(Julian date 2451548.5). The data is recorded on three computer tapes with over-

lapping ranges. The tapes are divided as follows:
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JULIAN DATE
TAPE TO

(CALENDAR DATE)

EPHEM 1 2433280.5

(Dec. 30, 1949)

JULIAN DATE

(CALENDAR DATE)

2440584.5

(Dec. 29, 1969)

EPHEM 2 2439500.5

(Jan. i0, 1969)

2446796.5

(Jan. 1, 1987)

EPHEM 3 2445708.5

(Jan. 9, 1984

2451548.5

(Jan. 5, 2000)

The data is tabulated in. 5 day intervals for the Moon, 2 day intervals for Mercury,

and 4 day intervals for the remaining planets. The corresponding second and fourth

differences are also recorded. Position and velocity for a particular planet at a

particular time is computed from Everett's interpolation formula utilizing second and
fourth differences.

A Level II flow chart of the Initialization block is shown.

4.3 OUTPUT BLOCK C

The output quantities consist of input and those quantities computed by the program.

As the input has been listed previously, only the computed quantities will be given

here with some overlap for those which could be either computed or input. A sample
of computer print is shown in the check case in Section 7.0.

4.3.1 Heliocentric Phase

X'P1, Y'P1, Z'P1

XDOT*P1, YDOT*P1,
ZDOT*P1

components of r
-pl

components of
-pl

X'P2, Y'P2, Z'P2

XDOT*P2, YDOT*P2,

ZDOT*P2

V*HLX, V*HLY,
V*HLZ

components of rp2

components of
-p2

cartesian components of the V h vector leaving

planet 1 (VhLx, VhLY, VhLz)
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Input Quantities

Requ! red

T 1, T 2, Flag2,

-rpl, rpl, rp2, rp2

t

Input Quantities

Computed

)_____lag 2 _ 07_ Ephemerisof,o_

____._._ )/ Co mpute

Ephemeris of Planet 2_;

J \ Use Input for

No _ Pla.et_ /

/ Compute

Ephemeris of Planet 1;_ ,

\ Use Input for /

__ Planet 2 ./

,// Use Input

_-.,Flag 2 = 3?.__ Ephemeris Data for

Error Ephemeris of Both

Comment Planets /

OUTPUT

Input'--rpl. =--rl'

-rpl: -rp2, -rp2 =-r 2

Level II Flow Chart - Initialization Block
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V*HL

THETA*L

PHI*L

V*HPX, V*HPY,
V*HPZ

V*HP

THETA*P

PHI*P

P

E

A

OPTION

DE LTA V

I NUMBER

W'X, W'Y, W*Z

T*CM

K*O

K*N

A*O

EP*T

MU

CENT BODY

magnitude of the vector above (V_hL)

right ascension of the vector above (gL)

declination of the vector above (¢L)

cartesian components of the V h vector arriving at

Planet 2 (Vhp X, Vh.py , Vh.pz }

magnitude of the vector above (Vhp)

right ascension of the vector above (ep)

declination of the vector above (¢p)

P

e

a

number of particular form used for Lambert's

equation (1,2, 3,4)

AV

dumber of iterations in Lambert's equation

components of W

Tcm

k
o

k
n

a
o

E T

central body
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FLAG 1

FLAG 2

FLAG 3

X*I

Y*I

Z*I

XDOT* 1

YDOT* 1

ZDOT* 1

V*HPXP

V*HPYP _
V*HPZP

flag 1

flag 2

flag 3

X 1 (input)

Y1 (input)

Z 1 (input)

(input)

(input)

(input)

components of V t
- hp

4.3.2

EN

AIN

Planetocentric Phase r

GRAV PLANET 1

GRAV PLANET 2

GRAV CNTRL BODY

R*P

S*IX

S* 1Y
S* 1Z

N

a I (initial value (if semi-major axis in Lambert's
equation)

Planet 1

gravitational constant of planet 1

gravitational constant of planet 2

/a

r
P

components of _S1

W*X

W*Y
W*Z

components of W
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B

B'X, B'Y, B*Z

T'X, T'Y, T*Z

R'X, R'Y, R*Z

B.T

B.R

A

B

components of B

components of T

components of R

B.T

B'R

a

E

A*I, A*2, A*3, A*4

P'X, P'Y, P*Z

K

a 1, a 2, a 3, a4

components ofP

K

R*OPT r
opt

P'*X, P'*Y, P'*Z

R'*P r'
P

E T e T

components of P'

A t a !

OMEGA o_

4.3.3 Planetocentric Section_ Re-Entry

A a

E

R*C

THETA

e

R
C

8 (right ascension of perifocus vector)
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W'X, W'Y, W*Z

B'X, B'Y, B*Z

B

components of W

components of B

B

T'X, T'Y, T*Z

R'X, R'Y, R*Z

R*R

B.T

B.R

components of T

components of R

r
r

B.T

B'R

5.0

GAMMA y

PHI

BASIC COMPUTATION BLOCKS

5.1 BLOCK I - HELIOCENTRIC PHASE

The Heliocentric Phase consists of two basic routines, Lambertts,equation and the
Conic Determination. All of the quantities computed in this section utilize the inputs

rpl' -rp2' "-rpl' -rp2' TI' T2 as obtained from the input and initialization block.

It is possible for Lambert's equation not to converge; this will occur, for example,

if the resulting ellipse has too large an eccentricity. Should convergence fail, the

program will stop. Also, in the Heliocentric Conic Determination section, if rpl
and rp2 are colltnear or nearly so, the orbit plane defined by W' cannot be computed
untquely. If this situation arises, the program will print the comment "VECTORS

ARE NEARLY COLLINEAR" and stop.

5.1.1

INPUT:

Block I. 1 - Lambert's Equation

rpl = _rl, _rp2 =r2, _t, T1, T2, ET, ko, a °

OUTPUT:

i.

a, W'

T -- 86400. (T 2-T1)
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2. W ! =

r I xr 2

I_rI x r 2[

3. C = tr 2 - rll

4, S ----

rl+r2 +c

Iterative Portion (i = 1,2, 3,..., 15)

B
5. a I - 2

o

s

cos cxi = 1 - at

where

cos,_l = -i.0

7. cos _i = 1 -
s-c

a i

-1

8. ot. = cos cos o_t1 (0 _ _i <rr)

-1.

9. fli = cos COS/3 i (0 < /3i _ _)

10.
2

sinot i = J 1- cos cxt

2
11. sinf_i = J 1-cos _i
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13. P
i

Option i: Tci =

Option 2:

[(¢_ - sin cx) - _ - sin fl)] + NP i

P
i

Tci = _ [(cx-sincx)+(T-sinfl)] +NP i

Option 3:

Po

1

Tci = Pi(N+I)- [(_ - sin _) + ¢ - sin _)]

Option 4:

P
i

Tci = Pi(N+I)- [(a - sin a) - _8- sin _)]

14. AT i = T-Tci

15. ai+ 1 = ai+Aa i

a i - ai_ 1

Aa i = k -T (T- Tci )
n Tci ci-1

i = 1,2,3,... ,15

Note: i is set to zero on one occasion (see flow chart)
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5.1.2 Block I, 2 - Heliocentric Conic Determination

INPUT: a, W'

OUTPUT: p, e, r 1, r 2, P, VhL, Vhp, d_L, e L , _bp, ep

p = [4a(s - rl)(S - r2)/c2] sin2 [(_ +_)/21

- sign used ff option 2 or 3 was used

+ sign used if option 1 or 4 was used

lo

a. e cos v 1 = "p-
r 1

-1

b. e cos v 2 = p - 1
r 2

t

a. cos /Xv -
r I "-L 2

r I • r 2

b. slnAv = + _/i- (cosAv) 2 _

m

c. Is W'
z

> 0

Yes: Sign of (stn Av) > 0; W = W'

No: Sign of (sinAv) < 0 ; W = -W_'

(cos Av)(e cos Vl) - (e cos v2)

e sinv I = (sinAv)

1 e = + /(e sin Vl )2 + (e cos Vl )2

t

)(e sin Vl)
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D
1 UVI w x rl/r I

e

o

o

, /1 .

-vz = -_z = (rz) (-_i _ +

(e cosvz) - (cosZ_v)(ecos-v2)-•
e sin v 2 = sin _v

• _ (e st,, v2)

r 2 =

10.
r 2

"_V2 = W x r2

D

11.

12, .

(e cos v 1) r 1 (e stn v 1)

--P - (e) r 1 (e) -'UV1

13. -VhL = Xl--rpl

14.

ZS_

Vhp = V2- -_p2

@L = sin-1 (VhL_VhL -_/2 _ _PL _ _/2

16. 8L = tan-1 ( VhLY )
VhLX

0 _SL<2n

_p = sin -1 (VhpZ/Vhp)

8 = tan -1 Vh_

p (VhpX)

-_/2 < _p < _/2

0<8 <2rT
p
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r_

° I
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o

u
o
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5.2 PLANETOCENTRIC PHASE - COMPUTATION BLOCK II

The planetocentric equations involve computation of the incoming and outgoing hyperbolas

Planet 2 is EARTH, in which case, an additional set of equations (re-entry) will be

computed for this planet. The computations are conveniently divided into three blocks,

incoming trajectory, outgoing trajectory, and re-entry (see flowchart on page 40).

5.2.1 Incoming Trajectory, Block II. 1

Equations

INPUT:
_VhL , y_p, rp, GM, S 1

OUTPUT:
S1, W_, B, _B, R, _T, a, e, a', e', al, a2, a3, a4, P, K, ropt, rp,

B.T, B" R

Re-entry

a, e, R c, B, W_, _B, B, _, R.R_,r r, B.T_, B. R, y, _, _V_p

1. (for planet 1)

S 1 x_ 2

W = C__,_S1
- jSlxS2 i

where

-sz= Iv'.
--np

are printed)

If [_V_pl : O, setS 1 = 0,0,0, set.[V_pl_ ,

VhL

s 2 = IYhL I

If Flag 3 is out, and Planet 1 is EARTH,
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2, a,

bo

-S1

B

cos (e L - u/2)

sin (0 L u/2)

O
m

2

+ rp

_IB--SI xW

Co

B = B1 B (B is printed)

o

o

T

Sly

2 + 2SIX Sly

-SIx

2 2S1X + Sly

0

_ --SlxT

(T is printed)

(R is printed)

o.

B • T and B • R are computed and printed

e al

a _-- -

GM

, i2}Vhp
(a is printed)
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bo rp
e = 1 - -- (e is printed)

a

1 Let

Iy.' hp 12 lYhL 12

C1 - GM ' C2 = GM

al, a2, a3, a 4 are computed and printed, where

a 1 = 8 (C 1 + C2)

a 2 = _ (C 1- C2)2

a3 = -2(C 2C2 + C1 C_)

2 2

a 4 = -C 1 C 2

So

o

-1
K -- cos _S1 • _S2

GM K

rop t : I-Vhp12 (csc _- 1)

(1st or 2nd quadrants; K is printed

in decimal degrees)

(rop t is printed)

10. _s3 = s 1 x w_

11. J e2-1 1p _- _ s3 +- sI-- e
e

(P_ is printed)
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0
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0
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o

o
o

o
0

U

44



C'_ _r7

AC ELECTRONICS DIVISION GENERAL MOTORS CORI::_)RATION _._

5.2.2

Equations

INPUT:

OUTPUT:

lo

Outgoing Trajectory, Block II. 2

W, VhL, GM, r P

a', e', rp, W, P'

ao

Do

s = -s .PU 2 --

sv = -s 2" (P_x_W)

0

0

a T _ _

GM (a t is printed)

2 2

rp SVZ 2 =
+r SV_

P
2 S 2r - 4a' r + 1)p v p (Su - 2a' r + 1)p (Su

2a ,2

.

e' = 2+1 (e' is printed)

0

r' = a' (1-e')
P (rp is printed)

.

.

So

COS _ =

,2)a' (1 - e - r
P

e'r
P

w is computed and printed

1
S cos o_ - -

p, = u e' _S2-- 2
SV

+

(1st and 2nd quadrant)

S
u

cos _ - --
ev

P (P is printed)2

SV
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B Test

-w 0

If an inequality results, the comment, nDANGER, NEW

PERICENTER LIES AHEAD n, is printed•

10. A test is made. If

r v > the comment, _TRANSFER DIFFICULTIES ARE
P rp, PR ESENTw, is printed•
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5.2.3

Equations

INPUT:

OUTPUT:

Block II. 3, Re-Entry

_0,y,_hp' GM

a, e,R c, 9, W, B, B, B'T, B'R, R, T

.

a _ m

GM

I_Vhp12

2,

am

be

r sin 2 ye = 1 + r [a[ 2

R c = a(1 - e)

(2 la[ + rr)

(R C is printed)

(e is printed)

o

Re

Vhp
Let S = . Then

- lYhp I

bo

C - 1
cos_b (SZsin_b- l/e)

m

sin8 =
2 _ C 2 "CSy+nS x Sx+S Y

2
2+ Sy

COS 8 =
2 _ C 2- CS x+msY SX + Sy

2 2
SX + Sy

m : - n; Inl : Iml : 1. On the first pass n : 1
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._ _2 . .2 ._2
(1) " °X T °y - u < 0, a comment is printed,

"RE-ENTRY CONDITIONS CANNOT BE OBTAINED".

2 2
(2) If Sx + Sy = 0, a comment is printed,

"JOB ABORTED DUE TO SINGULAR POLAR ORBIT".

Either of the two conditions above shall terminate the case.

Cm

_ e cos d_
W Z _ (Sy cos 8 - Sx sin 8) (save WZ)

_/e" - I

4_

do "

a.

W7 is tested against zero. If W Z > 0, 9 is computed and printed in
de_irrml degrees, and the next step will be equation (4). If W Z < 0,

n is set equal to -1; sin 9, cos 9 are recomputed and printed in

decimal degrees, and the next step will be equation (4).

e

W X = j_ (SZcos,sine-SYsin_)

Wy e= _ (Sx sin %b- S z cos %bcos 8)
e2 - i

o

= " 2 _ cos 8 - 8)Wz / (Sy Sx sin

4e 1

a.

b.

co

m

SxW

S

2 GME R CIVhp12

B= B!B

2
+ R C

(Bis printed)
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So

T

D

Sy

Sx + Sy

-sx

0

(T_ is printed)

@

7. R= Sx T (R is printed)

8. B • T and B • R are computed and printed.
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6.0 USERIS GUIDE

This section contains a description of the various possibilities which are provided by

the Program 291.1 for the determination of an interplanetary free fall mission pro-

file. In addition, a description of the role of Program Deck 291.1 in the conic

matching procedure is given.

The description of the use of Program 291.1 is subdivided into two sections. In

Paragraph 6.1 the program options as determined by the flags are explained inde-

pendently from the particular mission design. In Paragraph 6.2 the applications of

the program to particular missions are described and a sample case is provided.

A sample case is shown following the loadsheets to which it corresponds. The

resulting computer print shows the output quantities which are defined in Para-

graphs 3.3 and 4.3.

Although it is not claimed that the list of applications of Program 291.1, as shown,

exhausts all possibilities, the applications given do, in fact, cover many situations

commonly encountered in the definition of interplanetary missions.

6.1 FLAGS AND THEIR USE WITH ASSOCIATED OPTIONS

Three flags (numbers 1, 2, 3) are provided, two of which relate to the heliocentric

phase and one of which relates to the planetocentric phase. These flags allow the
user to realize various schemes of computation. All flags have the value zero

assembled into the program. This value will be used if no data are entered into the

corresponding location.

6.1.1 Heliocentric Phase

The Heliocentric Phase contains two flags, numbered 1 and 2, respectively. Flag 1,

if set to a non-zero value, will eliminate all computations except for the ephemeris

of the two designated planets. Its values may be specified as zero or non-zero. If

the value is set equal to zero, all computation according to specified input will be

performed.

Flag 2 can take on the value 0, 1, 2, 3 and provides additional flexibility in terms of

ephemeris input to Lambert's equation. If the value is zero, the ephemeris of the

planets specified at the input sheet will be provided. If any value other than 1, 2 or 3

is entered, the program will assume the value zero and print an error comment.

The ephemeris will then be computed from values taken from the tape.
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Flag 2 is set to a non-zero value whenever it is desired to supply to the Lambert's

equation routine position vectors other than those defined by the heliocentric (or

planetocentric} positions of the planets as specified by tape data. For applications

see Paragraph 6.2.5 (Flag 2 = 1), Paragraphs 6.2.2 and 6.2.3 (Flag 2 = 2). Para-

graph 6.2.4 and Paragraph 6.2.6 (Flag 2 = 3}.

The ephemeris of the planets with respect to bodies other than the sun may be obtained

by placing the code name of that body in the CENTRAL BODY input. This will cause

a shift in coordinates from a sun-centered to a planet-centered system. Such a change

is accomplished by a translation, and the orientation of the coordinate system remains

the same, however. Such a technique may be us ed to obtain communication distances

and data associated with tracking.

Circular and elliptical orbits, with respect to a planet rather than the Sun, may be

computed given the flight time {expressed by T 2 - T1} and two positions rl, r 2 through
use of the Flag 2 input and a change of the gravitational constant of the cen_tra_body.

This is explained in greater detail in Paragraph 6.2.

6.1.2 Planetocentric Phase

Program 291.1 computes certain orbital parameters for the planetocentric conics.

Flag 3 controls the specification of the planetocentric orbit plane for planetary

departure. Two cases have to be distinguished:

Flag 3 -- 0

Flag 3 _ 0

6.1.2.1 Flag 3 = 0

In normal usage, Flag 3 assumes its assembled value of zero. In such cases, the

first planet of the first leg is EARTH, and orbit planes for departure planets in

subsequent legs are determined from the incoming and outgoing .V_h vectors. S 1 for

Earth departure is computed on the criterion of maximum orbit plane inclination.

6.1.2.2 Flag 3_ 0

In this case the orbit plane is specified by the outgoing hyperbolic excess vector (Y-hL}

and a vector S 1, which must be input.

6.2 APPLICATIONS TO SPECIFIC PROBLEMS

Problems which frequently arise in the determination of interplanetary missions are

listed below. In each case, the corresponding use of Program 291.1 is explained.
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6.2.1 Round-trip Flyby Trajectories

A round-trip mission with all flags set at zero constitutes normal usage of the program.

In turn, a round-trip mission will be defined as any interplanetary mission which

departs from Earth, encounters at least one target planet along the path, and terminates

at the Earth. Any number of target planets may be incompased in such a case; this

includes missions of the grand tour and swingby types. In such normal usage, the data

for each leg is stacked sequentially. Stopover missions which do not enter the planetary

atmosphere are also included in this list, the only difference being that arising from the

difference in arrival and departure times due to the stopover interval.

6.2.2 One-way Missions

One-way missions are those interplanetary missions which neither encompass more

than one target planet, nor return to Earth. These may include probe flybys or

planetary landing missions. The computation procedure is as follows:

. The Earth-departure and target planet arrival times (T 1 and T 2, respec-

tively) are specified. This information, together with the planetary code

names, is entered as data for the desired leg.

. A third time T 3 (T 3
computed.

> T 2) and corresponding heliocentric position are

. A second or "pseudo" leg is formed, using as input times T 2 and T3,

Flag 2 = 2, and the computed heliocentric position vector entered as

X2, Y2, Z2' Any planet code name may be entered for Planet 2 in this

leg. The resulting computations will describe the trajectory parameters

at the desired target planet.

6.2.3 Atmospheric Entry at a Planet Other than Earth

If it is desired to simulate atmospheric entry for a planet other than Earth, the

following steps must be taken:

1. Set Flag 2 = 2 and input the ephemeris %2' -rp2 ) of the desirecl planet.

2. Use for PLANET 2 the code name EARTH

3. Enter the gravitational constant of the desired planet for GME

4. Enter the desired atmospheric entry parameters r r, 4, Y-

Input data for the departure planet is not affected by the steps above.

breaking and planetary landing may be handled in this manner.

Atmospheric
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Given two positions and the time between them, the program may be used to compute
elliptical orbits. This is done as follows:

,I _ _ _1 *I

1. Enter me uuuu nmne for me desired bouy zn _r_'lKAu, _UU_.

2. Enter the gravitational constant of this body for/_.

e

4.

Set Flag 2 = 3, and input the desired positions as r 1 and r_2.

Choose values for T 1 and T 2 such that T 2 - T 1 is equal to the desired
flight time.

6.2.5 Obtaining the Orbit Plane of Maximum Inclination for a Planet Other than
Earth

If, in cases where the departure planet is not EARTH, it is desired to utilize that

orbit plane having maximum inclination, Flag 3 is left as zero, the departure planet

is called EARTH, the gravitational constant for the desired planet is entered as GME,

and the ephemeris for this planet is entered using Flag 2 with a value of 1. If, in the

same situation, V_hL is known, S_1 may be computed from the equations

VhLY

Six- i_vhLi

VhLX

SLY=-I%LI

Slz = 0

Flag 3 is then set _ 0, and the computed components of S 1 are entered.

6.2.6 Conic Matching

The problem of matching the planetocentric hyperbolas to heliocentric ellipses in

position and time may, in general terms, be solved as follows:

° Set up the initial mission simulation onProgram 291.1. The input will

consist of the desired planets, closest-approach dates, closest-approach

distances, and other data that may be necessary for specification of the

mission. (See Applications described previously in this section.)

, Using the results from step 1 as input, Program 281 is used to compute

the planetocentric positions and velocities at the pericenters and spheres

of influence of the planets of concern.

55



AC ELECTRONICS DIVISION  ENERALMOTORSCORPORATION

. The Julian dates of the interaction of the planetocentric trajectories with

the corresponding spheres of influence are obtained from the corresponding

closest-approach dates by adding (in the case of planetary departure) or

subtracting (in the case of planetary approach) the corresponding planeto-

centric flight times expressed in days. These flight times are obtained

from Program 281 as used in step 2.

. The dates of sphere-of-influence passage, together with the names of the

respective planets, are entered into Program 291.1 to obtain the ephemerides
of the desired planets at these dates. Flag 1 _ 0 for this operation.

. The heliocentric positions of the vehicle at the spheres-of-influence are

obtained by adding the corresponding planetocentric positions of the vehicle

(obtained from step 2) to the heliocentric positions of the planets (obtained

from step 4) at the appropriate dates.

o Again, using Program 291.1, Flag 2 is set at 3, and the heliocentric

positions of the vehicle, and the corresponding heliocentric velocities of

the planets, are entered into the r 1, r2, i'pl, i'p2 inputs respectively.
Using a close tolerance for eT (say one second)-i the program is used to

compute the heliocentric velocities (_r 1' -_ 2) of the vehicle on the matched
transfer ellipses.

7.0 SAMPLE CASE

Shown on the following pages is a sample case in which one leg of a three-planet

flyby mission is computed. This sample consists of input data (written on the load

sheet as shown) and reduced photographs of the resulting computer print.
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ABSTRACT

This section contains the description of a digital computer

program for the determination of position, velocity, and

flight time of planetocentric hyperbolic orbits. The output

of this program determines initial conditions for nominal

planetocentric orbits as used in the performance assessment

of space guidance systems.
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1.0 INTRODUCTION

Program Deck 281 is used in connection with Program 291.1 in order to determine

the initial conditions for the nominal two-body orbits as used in the performance

assessment program for the free-fall phases of interplanetary missions. The connec-

tion between the two programs was explained in the introduction of the description for

Program Deck 291.1, and will, therefore, not be repeated here. The computations

consist of a straightforward application of two-body formulas in order to obtain from

the output of Program 291.1 the position and velocity at prespecified distances from

the center of the planet. A detailed discussion is contained in Paragraph 2 of the

description.

1.1 DEFINITION OF MATHEMATICAL SYMBOLS

The following symbols are used in the program to be described.

a semi-major axis of hyperbola

A or A(T) matrix transformation expressing mean equatorial coordinate system of

1950.0 in terms of the mean equatorial coordinate system of T L

eccentricity of hyperbola

E or E(_)

E T

matrix transformation expressing the ecliptic coordinate system in terms

of the equatorial coordinate system

the transpose of E

I,J,K an irrotational, right-handed, planet-centered coordinate system with I_

and J in the Earth's equatorial plane. I is along the vernal equinox and

K along the north pole.

i, ,k an irrotational, right-handed, planet-centered coordinate system with i

and_j in the ecliptic plane and k along the north celestial pole.

P semi-latus rectum of hyperbola

P

q

a unit vector directed to pericenter expressed in the "mean ecliptic and

equinox of time TL" under normal program usage

perifocal distance

r position vector (magnitude r)
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T

T
L

Vhp

Vhp

W

tip

E

O
sp

k
P

_z

T

Osp

sign

n

R 1

R
2

12

xl,Yl,Zl

x2' Y2' z2

x3,Y3,Z 3

x4' Y4' z4

2

time interval in Julian centuries from 1950.0

Julian days of time defining coordinate system

incoming asymptote vector

velocity vector

hyperbolic-excess velocity vector

hyperbolic-excess speed, the magnitude of Vhp

a unit vector perpendicular to the vehicle's orbit plane oriented such that

Q = W × P is parallel to the direction of motion of the vehicle at pericenter

declination of U in decimal degrees
-rp

mean obliquity of the ecliptic

right ascension of the outgoing asymptote in decimal degrees

longitude of U in decimal degrees
-rp

gravitational constant of planet

time interval in Julian centuries since 1900.0

declination of the outgoing asymptote in decimal degrees

(sign -- +1) input to reverse the direction of the W vector. Normal value
is +1

(n =_+1) input to determine the quadrant for computation. Outgoing tra-

jectories require that n = -1, incoming trajectories require that n = 1

position 1 for flight time determination

position 2 for flight time determination

mean motion

mean ecliptic coordinates of T L

mean equatorial coordinates of T L

mean equatorial coordinates of 1950.0

mean ecliptic coordinates of 1950.0
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2.0 MATHEMATICAL MODEL

2.1 GENERAL DESCRIPTION OF THE PROBLEM

A s stated earlier, the problem defined here is that of computing position and velocity

on hyperbolic orbits in a inverse-square law force field. The asymptotes of the hyper-

bola are specified as unit vectors in spherical coordinates relative to any arbitrary

Cartesian system. The two asymptotes define the plane of motion having unit normal

vector W, while orbital computations are performed relative to the conventional _P,

_,W system illustrated in Figure 1. The vector _P(see Figure 1) is formed from a

linear combination of the asymptote vectors V_and S 2 (see Eq. 4 in Paragraph 5.3.2),
while Q is defined by W x _P. In this manner a right-handed set of in-plane coordinates
is formed.

The scalar quantities a and e are computed from the hyperbolic-excess speed Vhp and
the closest-approach distance q from the relationships

and

a = -_--
2

Vhp

(1)

q
e = 1- a (2)

The asymptote angle rv and the in-plane coordinates xo_ , Yo_ of the position vector r are
then computed from a, e, and r, where r is the magnitude of the radius vector (an

input quantity). Clearly, in order to preserve consistency in definition, r >__q.

Flight time is computed from the hyperbolic anomaly, F, the mean motion, u, and

two independent input distances R 1 and R 2. As this relationship involves scalars

only, it is clear that R 1 and R 2 must lie on the same side of the major axis. The
basic equation is

where

and

(U 1 -U2) +F 2- F 1

tf =
u

u=l lal3

U., : ]_-le ' - 1 (i= 1,2)

(3)
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and -1
F. =sinh U.
I 1

tf is the flight time expressed in units consistent with r, _, and Vhp.

2.2 CHOICE OF PROPER QUADRANT

Some ambiguity will result unless the proper quadrant for r is chosen. In this pro-

gram quadrant choice is made on the basis of the argument that motion with respect

to a point may be divided into three general categories:

lo

2.

3.

Approaching the point,

Leaving the point,

Neither approaching nor leaving the point.

Proper quadrant choice is made through use of the input quantity n, where n = _+Iin

accordance with the following scheme:

lo

2.

If the desired trajectory approaches the planet, n is input as 1.

If the desired trajectory is leaving the planet, n is input as -1.

At pericenter the vehicle is neither approaching nor leaving, and either +1 or -1 may

be used. In the equations the effect of using +1 for n is that of reflecting the Yc0 axis,

and hence the geometry of motion, about the Pvector. A logic test is introduced so

that the proper asymptote (incoming or outgoing) is chosen.

The direction of the orbit plane vector W may be reversed by changing the sign of the

_11 in the WsignW input (see Eq. 11, Paragraph 5.3.1).

2.3 ADDITIONAL COORDINATE SYSTEMS

If Urp, the incoming asymptote vector, is expressed relative to the mean ecliptic

system of date T L (T L is an input time expressed in Julian days), and @sp, )_su
(spherical components of the outgoing asymptote Sei) are expressed relative tdthe

mean equatorial system of 1950.0, then position and velocity will be computed in

both the ecliptic and equatorial systems. The mean obliquity of the ecliptic c is

computed from

c = 230.452294 - (00.0130125) • -(0°.164 x 10 -5 ) 2 ,

4

Space Trajectories Program for the IBM 7090 Computer, by D. B. Holdrtdge;

TPL Technical Report No. 32-223
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where T L - 2415020.3

36525.

and T L (an input) is the Julian date at which the transformation is to take place.
single rotation about the axis of the 1950.0 vernal equinox is performed from the
rotation matrix

A

0 01COS c sin c

-sin c cos c

This transforms the outgoing asymptote defined by Ssp, ksp from the mean equatorial

system of date T L to the mean ecliptic and equinox system of T L.

However, should both asymptotes be entered in terms of a single coordinate system,

the value 57697945. should be used for T L. This will compute c to be 0 °.

Transformation to the ecliptic and equatorial systems of 1950.0 is accomplished by

the A(T) rotation matrix defined by equations 15, 16, 17 in Paragraph 5.3.2. *

However, this transformation becomes meaningless if T L = 57697945.

3.0 ORGANIZATION OF THE PROGRAM

Flow charts provide the basic framework around which the discussion is constructed.

These diagrams serve to indicate the logical flow connecting different functional

blocks. They do not describe literally the operation within the computer program

itself because many of the programming details are of little interest to most engineers.

The flow charts have been arranged and drawn according to a heirarchical structure.

The "highest u level, designated as Level I, depicts the overall structure of the pro-

gram. Each block appearing in this chart is described by another flow chart. These

charts are designated as Level II. This policy is repeated for each block in every

level until no further logic remains to be described.

Paragraph 3.1 contains a further discussion and definition of the criteria used to

establish the different flow chart levels. The symbols used in the flow charts are

defined in Paragraph 3.2. The symbols and nomenclature that are fundamental to

the discussion and equations are defined in Paragraph 3.3.

* Space Trajectories Program for the IBM 7090 Computer, by D. B. Holdridge;

JPL Technical Report No. 32-223
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3.1 SCHEMA FOR FLOW CHART PRESENTATION

As has already been stated, the flow charts are arranged according to "levels". In

the resulting heirarcy, the Level I flow chart provides the most general description

since it depicts the overall program. Each functional block is further described by
lower level flow charts. These charts indicate the logical flow within the block and

describe the input and output requirements of the block. The equations used to obtain

the desired outputs are presented as a supplement to the lowest level flow chart.

LEVEL I: This flow chart is designed to provide a very general description of the

entire program. The titles assigned to the functional blocks are intended to be sug-
gestive of the nature of the role to be performed within the block. Those functions

that are to be performed in the basic computational cycle are designated by Roman

numerals. Arabic symbols are used for functions that occur only once or play a
passive role.

To indicate the basic logical decisions that can regulate and alter the flow between

functional blocks, decision blocks are indicated. These decisions represent in a

general manner the types of decisions that are required. The actual decision logic

is described in the Level II flow charts of the functional blocks immediately preceding
the decision block.

LEVEL II" The Level II flow charts provide the first concrete description of the

program. Only the most important logical flow within each functional block is indi-

cated on these diagrams. The quantities that are required for all logical and compu-

tational operations within this block are stated on this chart. These quantities are

differentiated as being either INPUT (i. e., values provided initially by the engineer)

or COMPUTED (i.e., values determined in other portions of the program). The

quantities that are required in other parts of the program, either for print-out or for

computations, are also indicated on this flow chart. The functional blocks that appear

on these diagrams are denoted by two symbols (e. g., II. 1 when discussing the "first"

block in the Level II flow chart of functional block II) and a name. The names have

been selected to provide some insight into the nature of the block.

LEVEL III: These diagrams provide additional details of the logic flow within the

functional blocks depicted at Level II. In this program definition, Level HI provides

the description of the most intimate logical details in almost every case so no purpose

was served by proceeding to lower levels. These flow diagrams are augmented by

the equations programmed into the computer. The input and output requirements of

these blocks are stated on the diagrams. All of these quantities are summarized on
the Level II flow chart.

3.2 DEFINITION OF FLOW CHART SYMBOLS

The following symbols represent the only ones that are used in the flow charts pre-
sented below.



AC ELECTRONICS DIVISION QI_NERA.L- MOTORS CORPORATION _IM_->

Set of operations that is to be described further by

additional flow charts or by equations

>
/

Logical Decision

Operations that are predefined (i. e o, in some other

document)

Operations are completely defined by the state-
ments contained within the box

Connector used on Level II flow charts to indicate

entry source and exit destination

Connector used on Level III flow charts

Summary of all quantities required in computations

of flow chart on which this symbol appears or, al-

ternatively, summary of all quantities computed in

this flow chart which are required in other operations.

This broad arrow appears on Level I and Level II

flow charts. It is used to indicate information flow

from one block to another. The more important in-

formation is stated within the arrow. This symbol

has been introduced to emphasize that many quan-

tries are transmitted between the functional blocks

in the higher level charts.



AC ELECTRONIC6 DIVIBION O|NERAL MOTORI CORPORATION <;_

3. 3 BASIC ORGANIZATION OF THE PROGRAM

In general, the pro_gram consists of a straightforward sequence of computations using
a certain input format. This overall scheme is illustrated in the Level I flow chart

below,

A

INPUT

I

COMPUTATIONS

B

/> OUTPUT

INPUTj OUTPUT

INPUT - BLOCK A

Level I Flow Chart

4.1.1 Input Quantities

The program input consists of heading or identification data plus the following quan-
tries.

Vhp

q

T L

#

r

tip

k
P

@sp

0
sp

sign

hyperbolic excess speed (units of length/time)

closest approach distance (units of length)

(time in Julian days; if the asymptote vectors are input relative to the

same coordinate system, then T L must be input as 57697945. )

gravitational constant of central body (length3/ttme 2)

magnitude of position vector in units of length

declination of the incoming asymptote in decimal degrees

right ascension of the incoming asymptote in decimal degrees

declination of the outgoing asymptote in decimal degrees

right ascension of the outgoing asymptote in decimal degrees

may determine direct or retrograde motion; equal to +1; normally equal
to +1

9
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n quadrant determination factor equal to +1; n = -1 for outgoing trajectory,

+1 for incoming trajectory

R 1 position 1 for flight time determination, in units of length

R 2

Note:

position 2 for flight time determination, in units of length

The program will compute the time of flight from distance R 1 to distance

R 2. However, R 1 and R 2 must be on the same side of the major axis

4.1.2 Load Sheet

The above input quantities are arranged on the standardized load sheet shown on the

following page.

4.2 OUTPUT - BLOCK C

4.2.1 Output Quantities

The program prints all of the major quantities computed inthe format shown in the check

case illustrated in Paragraph 6.3. These are definedbelowinterms of the notation

symbols used In the computer output. See Paragraph 1.3 for complete definitions.

V*HP Vhp X*O_

Y*O_ components of r
/

z*o 9

Q q

T*L T L

MU

R*O r

B*P tip

LAMBDA*P )_
P

PHI*SP _sp

THETA*SP e
sp

SIGN sign (+_1)

N n

Y.*O

Z.*

components of v

Note: r and v are printed in four co-B
ordinate systems, each labeled as

shown on the sample output form.

components of P

10
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R* I

R*2

NU

F* 1

F*2

T*F

V*O1

A

E

P

VC

SIN ALPHAC

COS ALPHAC

SXE

SYE

SZE

TAU

XW

YW

SX1

SY1

SZI

R 1

R 2

19

F 1

F 2

tf

Ivl

a

e

P

v
C

sin
c

COS
c

Sxe!
Sye

S
ze

x

Y
O2

Sxl

Syl

S
zl

components
of S

-e

components

of s 1

QI

QJ

QK

URPI

URPJ

URPK

WI

WJ

WK

S2I

S2J

S2K

SIN ALPHA

COS ALPHA

V*I

NU

F1

F2

TF

U1

U2

All,... ,A33

Qx

Qy

Qz

U i
rpx_

U
rpy

U
rpz

W
x

W
Y

W
z

components

of Q

components
of U

--rp

_, components
of W

S2x

S2y: components
of S 2

S2z

sin

COS

v 1

',3

F 1

F 2

ui

U 2

all, •.., a33

12
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5.0

5.1

AC ELECTRONICS DIVISION

COMPUTATION BLOCK I

LEVEL II FLOW CHART

GENERAL MOTORS CORPORATION_

The computation block is defined more specifically by the Level II flow chart shown
below.

Input Quantities

Required

Vhp , q, TL, _, r,

_p, Xp, Zsp' %p'

sign, n, R I, R 2

Computed Quantities

Required

1

Computation

Set I

£ = Urp ,

V =S

I. 2

Computation

Set II

OUTPUT

2:,£, _P,w,

a, e, p, v, FI,

F 2, tf, v

_( EXIT

]

I
J
f

t
I
I

J

13
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5.2 LEVEL III FLOW CHARTS

5.2.1 Computation Set I

I Input Quantities

I Required

I Vhp, q, TL,_t,
I

r, _p,Xp,%p,
I e sign, n, R I,

sp'

t R 2
I

Computed Quantities

Required

I
I

@
1
Computation

Set I

I

OUTPUT I

I
I
I
I
I

14
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O
5.2.2 Computation Set II

Input Quantities

Required

Computed Quantities

Required

OUTPUT

V

I
I
J

I. 2
Computation!

| Set II
L

I

15
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5.3 DETAILED EQUATIONS

5.3.1 _Computation Set I

.

.

.

.

.

.

.

.

10.

.

S = cos _sp cos esp I + cos @sp sin _sp J + sin @sp K--el -- _

A
S I+S J+S K

xe - ye - ze --

T
T L ° 2415020.3

36525.

SI=

= 230.452294 - (0°.0130125) v - (0 °. 164 x 10 -5} 2

m

Sxl

vl

Szl
h m

n

1 0

0 cOS ¢

0 -sin (

0

sin (

COS c

S
xe

S
ye

S
ze

/x

-#
a _

2

Vhp

q
e = l---

a

E

p = a(1 - e 2)

1
xcv e (p - r)

2 2

YcO - n _ r - x w

U = cos flpCOS k i +coSflp sinkpj +sinflpk-rp p -

S
xe

S
ye

S
ze

16
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Q
11.

W

_Urp x S 1 .
ITv -- _ I

I.Vrp _ _1 I

5.3.2 Computation Set II

Ii

,

(sign)

S 2 = VxW where

V= P

_S 1 if n = -1

I 'e 2 - i

sin c_ =
e

o

n
COS _ = --

e

e

.

e

m

_.P = V cos o_+_s2

10.

sin c_

Q = Wxp

r 1 = x P + ywQ

Vc hp +

8. ](xco + ae)(e2- 1) ]
sin c_ =

C 2'

xu) + ae)2(e2 - 1)2 + Yu)

9. n lyco I
COS OZ =

!

+ ae)2(e 2 - 1) 2 + Yw

= sinv1 _PVc coS Otc +QVe e

17
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' C/_5

11.

x 2 x._

= E T
Y2 Yl

z 2 z I

= E T
r 1

12.

13.

v 2 = E T v 1

e (U 1

tf =

- U2) + F 2 - F 1

14.

15.

where l(lal+ri 2
• U. =
' 1 lale / -1

F. = sinh-I U.
1 1

vI =

T

.2 .2(_ + Yl + Zl)

T L - 2433282.4

36525.

1/2

i=1,2

16.

all =

a12 = -a21 =

a13 = -a31 =

a22 =

a23 = a32 =

a33 =

1 - (.29697E-3) T 2 -(.13E-6) T 3

-(.2234988E-I) T -(.676E-5) T 2 + (.221E-5) T 3

-(.971711E-2) T + (.207E-5) T 2 + (.96E-6) T 3

1 - (.24976E-3) T 2 - (.15E-6) T 3

-(.10859E-3) T 2 - (.3E-7) T 3

1 -(.4721E-4) T 2 + (.2E-7) T 3

18
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17.

18.

19.

20.

A A

m

all -a12

-a21 a22

-a31 a32

r =Ar
-3 -2

V = Av
-3 -2

c = 23.445787

-a13

a23

a33

21.

22.

r = Er
-4 -3

V = Ev
-4 -3

6.0 USER'S GUIDE

6.1 USE OF INPUT

The input format to this program is shown in Paragraph 4.2.1. Although the form

simple and straightforward, there are some points of concern which will be re-

peated here for emphasis.

6.1.1 Care must be taken to insure that all units are correct and consistent with

each other. The date T L must be expressed in Julian days, and the incoming and
outgoing asymptotes must not be interchanged.

6.1.2 The positions R1, R 2 for flight time determination must lie on the same side

of the axis of symmetry of the hyperbola If R_ > R , the computed flight time tf• Z 1
will appear as a negative number. Its absolute value will, however, be the same if

R 1 and R 2 are interchanged.

6.1.3 Care must be taken to ascertain the correct state of motion, i.e., whether

the vehicle is approaching or leaving the central body. This in turn is reflected in

the proper use of n, defined as follows:

19
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1. If the desired trajectory approaches the planet, let n = 1.

2. If the desired trajectory is leaving the planet, let n = -1.

3. If neither of the above is the case (evaluation at pericenter), either +1.

or -1. may be used.

PARTICULAR ATTENTION MUST BE GIVEN TO THIS POINT IF THE DE-

SIRED RESULTS ARE TO BE OBTAINED_

6.1.4 Although the orbit plane and direction of motion (whether direct or retro-

grade) are originally defined by the asymptote vectors, another vector in the plane

may be used in place of one asymptote vector, provided that:

1. If the vehicle is approaching the central body, the incoming asymptote

remains as defined.

2. If the vehicle is leaving the central body, the outgoing asymptote remains

as defined.

3. The cross product of the vectors used thusly results in a vector having

the same direction as the cross product of incoming and outgoing asymp-

totes, in that order (see Eq. 11 in Paragraph 5.3.1). Should the resultingW
vector be opposite in direction to its desired orientation, - 1 should be

used in the n signn input.

6.1.5 If _s-' 8s"' fin, k_ are expressed relative to the same coordinate system,

the value 57_9794_. n_ust_e used for T L. In this, the usual case, the printout
corresponding to the 1950.0 system (see output of check case) will be meaningless.

However, the first two coordinate systems printed should give identical components.

6.2 SAMPLE RUN - OUTPUT FORMAT

A check case containing computer print is shown on the following pages.

2O
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PART 1-3

DESIGN OF NOMINAL

INTERPLANETARY MISSIONS
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ABSTRACT

This section describes a general procedure for the design

of an interplanetary free-fall trajectory using Programs 281.1
and 291.1. As each of these programs has been discussed in

detail in the preceding parts, only the input-output transfer

and manipulation is discussed here. If a more detailed know-

ledge of mission design is desired, two references are listed

at the end of the text.

ii
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PROCEDURE FOR DESIGNING NOMINAL INTERPLANETARY MISSIONS

1

,

Select the desired planets to be encountered and the corresponding dates of

encounter [ 1]. Other information such as closest approach distances and earth

re-entry data may be chosen, if desired. This information is then entered as

input to program 291.1. The program is then run for computation of the

approximate heliocentric and planetocentric parameters.

The next step is that of establishing the near-planet or planetocentric phases of

the mission. These start at entry into the planetary sphere of influence [2 ], and

end upon exit from this sphere. In turn, the planetocentric phases are divided

into two additional phases, incoming and outgoing. The incoming planetocentric

phase starts at entry into the sphere of influence and ends upon reaching the closest

approach distance to the planet (this distance is chosen by the designer in accord-

ance with his particular criteria,l. 1 planetary radius is a good rule-of-thumb

value). The outgoing planetocentric phase starts at the closest approach point to

the planet, and ends at the point of exit from the sphere of influence. The time of

closest approach is generally chosen to be the Julian date entered in program

291.1 for the particular planet, while the times at which the spheres of influence

are crossed are obtained by adding or subtracting the corresponding flight times
as obtained from program 281.1.

To obtain the outgoing planetocentric positions, velocities, and flight times the

following output data from the first 291.1 computation is entered as input data for
281.1:

Output Quantity from 291.1 Input Quantity for 281.1

V*HL Vhp

R*P q

GRAV PLANET 1

R*P r

PHI*P t _p

THETA*P k
P

tObtain from previous leg if trajectory does not originate at planet under consideration
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THETA*L-90*

Output Quantity from 291.1

=0
sp

sp

Input Quantity for 281.1

sign = 1.

n=-l.

R 1 = radius of sphere

of influence [ 1]

R*P R 2 = R*P

T L = 57697945.

The above input will yield position and velocity at the closest approach point.

These quantities may be obtained at the sphere of influence by submitting a second

281.1 run using the above input except that r is changed from R*P to the sphere of
influence radius value.

To obtain the incoming planetocentric positions, velocities, and flight times the

following output data from the first 291.1 computation is entered as input data for

281.1.

Output Quantity from 291.1

V*HP (from previous leg)

R*P

Input Quantity for 281.1

Vhp

q

GRAV PLANET 1

R*P r

Obtain THETA*L from current leg if trajectory does originate at planet under
consideration
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Pi-ii* P *

THETA*P *

PHI*L

THETA*L

R*P

/3p

k
P

cp
sp

8
sp

sign = i,

n=l,

R 1 = radius of sphere of influence [ 1]

R 2

T L = 57697945.

As before, position and velocity at the sphere of influence may be obtained by

processing an additional run, substituting the radius of the sphere for the above
value of r.

In the case of earth re-entry, the input is as follows:

Output Quantity from 291.1 Input Quantity for 281.1

V*HP Vhp

R*C q

GRAV PLANET 2 _t

R*C r

PHI* P tip

THETA*P kp

PHI cp
sp

Obtain from previous leg if trajectory does not originate at planet under consideration

3
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R*R

THETA 0
sp

sign = 1.

n=l.

R 1 = radius of sphere of influence [ 1]

R 2

T L = 57697945.

.

,

.

+

Times at the spheres of influence are obtained after all the 281.1 cases are proc-

essed. For each planetary encounter (except for mission origination and termina-

tion) two such times will exist. One is the time of entry into the sphere of

influence, obtained by subtracting the incoming flight time from the Julian date of

closest approach to the planet. The time of exit from the sphere of influence is

obtained by adding the outgoing flight time to the Julian date of closest approach.

In all cases the flight times are obtained from program 281.1 as T*F. However,

these numbers are in seconds and must be converted to days through division by
0. 864 x 105.

The ephemerides of the planets of concern are obtained at the time computed in

(3). Program 291.1 is used as before except that Flag 1 is made nonzero. The

resulting output will consist of planetary positions and velocities only.

Heliocentric positions at the spheres of influence are obtained by adding the

planetocentric sphere of influence positions to the corresponding heliocentric

planetary positions as obtained from (4). These results form the final helio-

centric positions to be used in the computation of the final heliocentric transfer

ellipse.

The final transfer ellipse is computed through use of program 291.1. The input

is established as before except that the positions obtained from step (5) and the

planetary velocities obtained from step (4) are entered in the R l, R 2 and _1 82

input; Flag 2 is set equal to 3, c T is made small (say one second). Additionally,
the times at the spheres of influences are used for T 1 and T 2 as in step (4). The

major output of this computation will consist of the initial and terminal positions

for the heliocentric phases.

4
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